Gleitender Durchschnittlicher Filtercode Matlab

Erstellt am Mittwoch, den 08. Oktober 2008 um 20:04 Uhr Zuletzt aktualisiert am Donnerstag, den 14. März 2013 um 01:29 Uhr Geschrieben von: Batuhan Osmanoglu Zugriffe: 38977 Moving Average In Matlab Oft finde ich mich in der Notwendigkeit der Mittelung der Daten, die ich habe, um das Rauschen ein wenig zu reduzieren Bit. Ich schrieb paar Funktionen, um genau das tun, was ich will, aber Matlabs in Filter-Funktion gebaut funktioniert auch ziemlich gut. Hier schreibe ich über 1D und 2D Mittelung von Daten. 1D-Filter kann mit der Filterfunktion realisiert werden. Die Filterfunktion erfordert mindestens drei Eingangsparameter: den Zählerkoeffizienten für den Filter (b), den Nennerkoeffizienten für den Filter (a) und natürlich die Daten (X). Ein laufender Mittelwertfilter kann einfach definiert werden: Für 2D-Daten können wir die Funktion Matlabs filter2 verwenden. Für weitere Informationen, wie der Filter funktioniert, können Sie eingeben: Hier ist eine schnelle und schmutzige Implementierung eines 16 von 16 gleitenden durchschnittlichen Filters. Zuerst müssen wir den Filter definieren. Da alles, was wir wollen, gleicher Beitrag aller Nachbarn ist, können wir einfach die Funktion verwenden. Wir teilen alles mit 256 (1616), da wir nicht den allgemeinen Pegel (Amplitude) des Signals ändern wollen. Zur Anwendung des Filters können wir einfach sagen, die folgenden Unten sind die Ergebnisse für die Phase eines SAR-Interferogramms. In diesem Fall ist der Bereich in der Y-Achse und der Azimut auf der X-Achse abgebildet. Der Filter war 4 Pixel breit im Bereich und 16 Pixel breit im Azimut. Login SearchDocumentation Dieses Beispiel zeigt den empfohlenen Workflow zum Generieren von C-Code aus einer MATLAB-Funktion mit dem Befehl codegen. Dies sind die folgenden Schritte: 1. Fügen Sie die Codegen-Direktive zur MATLAB-Funktion hinzu, um anzuzeigen, dass sie für die Codegenerierung vorgesehen ist. Mit dieser Richtlinie kann der MATLAB-Codeanalysator auch Warnungen und Fehler identifizieren, die für MATLAB zur Codegenerierung spezifisch sind. 2. Generieren Sie eine MEX-Funktion, um zu überprüfen, ob der MATLAB-Code für die Codegenerierung geeignet ist. Wenn Fehler auftreten, sollten Sie sie vor dem Generieren von C-Code zu beheben. 3. Testen Sie die MEX-Funktion in MATLAB, um sicherzustellen, dass es funktional dem ursprünglichen MATLAB-Code entspricht und dass keine Laufzeitfehler auftreten. 4. Generieren Sie C-Code. 5. Überprüfen Sie den C-Code. Voraussetzungen Es gibt keine Voraussetzungen für dieses Beispiel. Erstellen eines neuen Ordners und Kopieren von relevanten Dateien Der folgende Code erstellt einen Ordner in Ihrem aktuellen Arbeitsordner (pwd). Der neue Ordner enthält nur die Dateien, die für dieses Beispiel relevant sind. Wenn Sie den aktuellen Ordner nicht beeinflussen möchten (oder wenn Sie keine Dateien in diesem Ordner erzeugen können), sollten Sie den Arbeitsordner ändern. Ausführen des Befehls: Erstellen eines neuen Ordners und Kopieren von relevanten Dateien Über die averagingfilter-Funktion Die averagingfilter. m-Funktion fungiert als Mittelungsfilter für das Eingangssignal, das einen Eingabevektor von Werten annimmt und einen Durchschnitt für jeden Wert im Vektor berechnet. Der Ausgangsvektor ist die gleiche Größe und Form wie der Eingangsvektor. Wählen Sie Ihr LandDokumentation tsmovavg Ausgabe tsmovavg (tsobj, s, lag) liefert den einfachen gleitenden Durchschnitt für finanzielle Zeitreihe Objekt, tsobj. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Ausgabe tsmovavg (Vektor, s, lag, dim) gibt den einfachen gleitenden Durchschnitt für einen Vektor zurück. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Output tsmovavg (tsobj, e, timeperiod) gibt den exponentiellen gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1). Output tsmovavg (Vektor, e, timeperiod, dim) gibt den exponentiell gewichteten gleitenden Durchschnitt für einen Vektor zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. (2 / (Zeitabschnitt 1)). Ausgabe tsmovavg (tsobj, t, numperiod) gibt den dreieckigen gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Ausgabe tsmovavg (Vektor, t, numperiod, dim) gibt den dreieckigen gleitenden Durchschnitt für einen Vektor zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Ausgabe tsmovavg (tsobj, w, Gewichte) gibt den gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Indem Gewichte für jedes Element in dem sich bewegenden Fenster bereitgestellt werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Ausgabe tsmovavg (Vektor, w, Gewichte, dim) gibt den gewichteten gleitenden Durchschnitt für den Vektor zurück, indem Gewichte für jedes Element in dem sich bewegenden Fenster geliefert werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Output tsmovavg (tsobj, m, numperiod) gibt den modifizierten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Ausgabe tsmovavg (Vektor, m, numperiod, dim) gibt den modifizierten gleitenden Durchschnitt für den Vektor zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Dim 8212 Dimension, um auf positive ganze Zahl mit dem Wert 1 oder 2 arbeiten Dimension zu arbeiten, als eine positive Ganzzahl mit einem Wert von 1 oder 2 angegeben. Dim ist ein optionales Eingabeargument, und wenn es nicht als eine Eingabe enthalten ist, die Standardeinstellung Wert 2 wird angenommen. Der Standardwert von dim 2 gibt eine zeilenorientierte Matrix an, wobei jede Zeile eine Variable ist und jede Spalte eine Beobachtung ist. Wenn dim 1. die Eingabe als Spaltenvektor oder spaltenorientierte Matrix angenommen wird, wobei jede Spalte eine Variable und jede Zeile eine Beobachtung ist. E 8212 Indikator für exponentiell gleitenden durchschnittlichen Charaktervektor Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei der Zeitabschnitt der Zeitraum des exponentiellen gleitenden Durchschnitts ist. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1) Zeitintervall 8212 Zeitdauer nichtnegative Ganzzahl Wählen Sie Ihr CountryMoving Average Filter (MA Filter) Loading. Das gleitende Mittelfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetasteten Daten / Signalen verwendet wird. Es benötigt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastungen und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Der MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Durchschnitt dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungen / Berechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, dass der Filter mit 3-Punkt-Moving-Average bei der Filterung des Rauschens nicht viel getan hat. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, daß der gleitende mittlere Filter nicht ein Band von Frequenzen von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, ist der gleitende Durchschnitt ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpassfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primärer SidebarMoving-Average Filter von Traffic Daten Dieses Beispiel zeigt, wie die Verkehrsflussdaten mit Hilfe eines gleitenden Durchschnittsfilters mit einem 4-Stunden-Schiebefenster geglättet werden. Die folgende Differenzgleichung beschreibt einen Filter, der die aktuelle Stunde und die drei vorhergehenden Datenstunden mittelt. Importieren Sie die Verkehrsdaten und ordnen Sie die erste Spalte der Fahrzeugzählungen dem Vektor x zu. Erstellen Sie die Filterkoeffizientenvektoren. Berechnen Sie den 4-Stunden-gleitenden Durchschnitt der Daten und zeichnen Sie die ursprünglichen Daten und die gefilterten Daten. MATLAB und Simulink sind eingetragene Warenzeichen von The MathWorks, Inc. Siehe auch www. mathworks / trademarks für eine Liste anderer Marken, die Eigentum von The MathWorks sind. Weitere Produkt - oder Markennamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Eigentümer. Wähle dein Land


Comments

Popular Posts